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A point projection approach for improving the accuracy

of the multilevel B-spline approximation

Seonghyeon Moon, Kwanghee Ko∗

The School of Mechanical Engineering, Gwangju Institute of Science and Technology,
123, Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea

Abstract

In this study, we present a method for improving the accuracy of the
multilevel B-spline approximation(MBA) method. We combine a point pro-
jection method with the MBA method for reducing the approximation error
by directly adjusting the control points in the local area. An initial surface
is generated by the MBA method, and grid points are produced on the sur-
face. These grid points are projected onto the scattered point set, and the
distances between the grid points and the projected points are computed.
The control points are then modified based on the distances. The proposed
method shows better approximations even with the same number of control
points and ensures C2-continuity. The experimental results with examples
verify the validity of the proposed method.

Keywords: Multilevel B-spline approximation, Point projection, Scattered
data fitting, control points

1. Introduction

3D scanning is a method for generating scattered data points that rep-
resent the geometric shape of an object. With the improvement in scanning
software and hardware technology, 3D scanning is being used in various fields,
such as computer graphics, computer-aided design, topographic survey, man-
ufacturing, and medical surgery, for a wide variety of applications. However,
there are certain limitations when scanned data points are used in practice.
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For instance, these points are unstructured in most cases; therefore, it is
difficult to derive any useful relations between them. These relations may
be necessary for computation of derivatives, or other intrinsic properties.
Moreover, a scanner typically generates a large number of points, result-
ing in long processing times. Thus, new advanced methods are required for
analyzing data, such as reconstructing a surface from a reduced number of
scattered data points and using this surface for extracting various properties
or for data reduction. This approach has been utilized in various applications
[1, 2, 3, 4, 5].

Among scattered data fitting methods, the multilevel B-spline approxi-
mation (MBA) method [6] is widely used in practice. This method creates
a surface that interpolates the scattered data points using the least squares
approach. If the approximation error is larger than the user defined toler-
ance, the method increases the number of control points through refining
a control net in a hierarchical manner and reduces the approximation er-
ror iteratively. However, the method may not yield a satisfactory result at
a fixed hierarchy level. This problem is more clearly noticed when sharp
changes occur in the geometric shape defined by the point set. Moreover, as
the control net is refined to reduce the approximation error, the number of
control points increases. Consequently, computation time increases. A great
deal of research has been conducted to improve the MBA method. Zhang et
al. [7] proposed a method for adaptively finding an area of large error and
performing refinement therein. However, this method increased the number
of control points for maintaining C2-continuity. Bertram et al. [1] proposed
an approach that combined adaptive clustering with an approximation by
piecewise polynomials. This approach localized the computation of the mul-
tilevel control lattice and improved efficiency in terms of computation time.
Later, Seo and Chen [8] suggested an adaptive lattice partitioning method
for reducing computation cost. Bracco et al. [9] suggested a new method
for scattered data fitting using a local approximation technique. The hier-
archical b-spline can also be implemented based on the subdivision scheme
as proposed in [10], which relates the basis functions and the coefficients on
different levels algebraically.

Minimizing the number of control points is another issue of the MBA
method. The accuracy of approximation can be easily improved by refine-
ments, which increase the number of control points by a factor of four. How-
ever, it is beneficial to maintain the number of control points as small as
possible while the accuracy requirement is satisfied because this saves mem-
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ory and reduces the computation time in the subsequent process.
In this study, a method for improving the accuracy of MBA is proposed. It

combines the MBA method [6] with the point projection approach. Initially,
the MBA method is applied to obtain a surface with control points at one
hierarchical level. Subsequently, the grid points on the surface are projected
onto the input points. The distances between the surface and the projected
points are then computed and applied to the control points.

The paper is structured as follows. The overall process and the detailed
steps of the proposed method are presented in Section 2. Results and dis-
cussion are presented in Section 3. Section 4 concludes the paper with rec-
ommended future work.

2. Overall procedure

Figure 1: Flowchart of the proposed method

The overall process of the proposed method is shown in Fig. 1. 2.5D
scattered data points are assumed to be given. MBA is first utilized to
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form an initial surface for approximating the scattered data. Points are
then generated on the surface by creating a grid in the parametric domain
and mapping the grid points on the surface. The points on the surface
are projected onto the scattered data using a point projection approach.
Finally, a B-spline surface is reconstructed by adjusting the control points,
considering the distances between the points on the surface and the projected
points on the scattered data. A detailed explanation is presented in the
following sections.

2.1. Generation of an initial surface

The initial surface for approximating the 2.5D scattered data points is
generated using the MBA method. This method is well suited for approxi-
mating 2.5D data points by B-splines. The number of control points on the
surface is determined by the approximation error. The level of refinement,
which determines the number of control points for approximation, is orga-
nized in a hierarchical manner. For completeness, a summary of the method
is presented in the subsequent sections [6].

B-spline approximation in MBA

Figure 2: Rectangular domain Ω (thick blue lines) and control lattice Φ (thin black lines).
.

We assume that there is a rectangular domain Ω in the xy-plane ( Ω
= { (x, y) | 0 ≤ x ≤ m , 0 ≤ y ≤ n } ) and a control lattice Φ with
(m + 3) × (n + 3) control points located at (i, j) for i = -1, 0, 1, . . . , m+1
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and j = -1, 0, . . . , n+1. The control lattice Φ is defined large enough to cover
the domain Ω as shown in Fig. 2. Then, the approximation function f is
defined as

f(x, y) =
3∑

k=0

3∑
l=0

Bk(s)Bl(t)φ(i+k)(j+l), (1)

where i = bxc − 1, j = byc − 1, s = x− bxc and t = y − byc. Bk and Bl are
the uniform cubic B-spline basis functions.

When there is a point p = (xc, yc, zc), the control points φkl can be
determined in the least squares sense to generate a surface interpolating the
point as follows [6]:

φkl =
Bk(s)Bl(t)zc∑3

a=0

∑3
b=0(Ba(s)Bb(t))2

. (2)

If more than two points pq = (xq
c, y

q
c , z

q
c ), q = 1, 2, 3, · · · , nq are near each

other, Eq. (2) yields a different control point value φq
c for each point pq [6].

φq
c =

Bk(s)Bl(t)z
q
c∑3

a=0

∑3
b=0(Ba(s)Bb(t))2

. (3)

Here, k = (i+1)−bxcc, l = (j+1)−bxcc, s = xc−bxcc, and t = yc−bycc. This
implies that there are multiple candidate control points φq

c for determining
φij.

The optimal control point φij that minimizes the approximation error is
determined by [6]

φij =

∑nq

q=1

[∑3
k=0

∑3
l=0(Bk(s)Bl(t))

2φq
c

]∑nq

q=1

[∑3
k=0

∑3
l=0(Bk(s)Bl(t))2

] , (4)

where i = bxcc − 1, j = bycc − 1, s = xc − bxcc and t = yc − bycc.
When there is no point p = (xc, yc, zc), a zero value is assigned to φij.

Multilevel B-spline approximation

The computation process in the previous section is applied to the multi-
level B-spline approximation scheme. We consider a control lattice φ0 of size
(m+ 3)× (n+ 3). Then, the control lattice φ1 after the refinement is of size
(2m+ 3)× (2n+ 3). The space of the control lattice is thereby halved, and
the control lattice becomes finer.
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Figure 3 shows the diagram of the multilevel B-splines approximation.
f0, f1 and f2 refer to the surface functions. φ0, φ1 and φh refer to the control
lattices. Three levels of control lattices are considered: φ0 with a set of 8× 8
control points, φ1 with a set of 13 × 13 control points, and φ2 with a set of
18 × 18 control points. φ0 is calculated and then the surface function f0 is
generated using φ0. The error between the real and the estimated values is
calculated and used for generating the next control lattice. Likewise, f1 is
generated again using the φ1 control lattice, and an error is incurred by f1.
This error is used for the determination of φ2. This process of refinement
and computation of control points is repeated until the approximation error
becomes less than a user defined tolerance.

Figure 3: Process of multilevel B-spline approximation

2.2. Generation of grid points

Once the initial surface is generated, grid points are extracted from the
surface. The x and y coordinates of the grid points are selected such that they
match those of the control points of the control lattice. Then, the grid points
are overlaid on the control lattice as shown in Fig. 4.

The rectangular domain Ω is discretized uniformly to produce m+ 1 and
n+ 1 points in the x and y directions. A uniform cubic B-spline of degree d
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Figure 4: Discretized points in the domain Ω and the control lattice Φ laid over the domain

is then created using Ω for the knot vectors Ts and Tt as follows:

Ts = {si|si = i/(m+ 3 + d), i = 0, 1, 2, · · · ,m+ 3 + d} ,
Tt = {tj|tj = j/(n+ 3 + d), j = 0, 1, 2, · · · , n+ 3 + d} .

Once the surface is defined, the parameters for the grid are obtained using
the knot values

pij = (ui, vj),

ui = si+3, i = 0, 1, · · · ,m,
vj = tj+3, j = 0, 1, · · · , n.

Next, the surface is evaluated at pij to produce the grid points, which are
illustrated in Fig. 4.

2.3. Projection of the grid points to the scattered data

After the grid points are generated, they are projected onto the scattered
data. To this end, the point projection approach is utilized. The steps of
point projection are summarized as follows [11]. Let us assume that there is
a point p = (x, y, z) to be projected onto the n points pd = (xd, yd, zd), d =
0, 1, · · ·n−1. Then, the sum of the weighted squared distances with a weight
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Figure 5: Point projection from an initial surface to the scattered data.

factor ad is defined as

E(p) =
n−1∑
d=0

ad‖p− pd‖2

=
n−1∑
d=0

ad[(x− xd)2 + (y − yd)2 + (z − zd)2] .

(5)

Eq. (5) can be efficiently computed using a five dimensional vector c [12].

c =(c0, c1, c2, c3, c4)

c0 =
n−1∑
d=0

ad, c1 =
n−1∑
d=0

adxd, c2 =
n−1∑
d=0

adyd ,

c3 =
n−1∑
d=0

adzd, c4 =
n−1∑
d=0

ad(xd
2 + yd

2 + zd
2) ,

(6)

E(p) = c0(x
2 + y2 + z2)− 2(c1x+ c2y + c3z) + c4 . (7)

We assume that p∗ = (x∗, y∗, z∗) is the result of the projection along the
direction n = (nx, ny, nz). Then, p∗ can be defined as

p∗ = p∗(t) = p + tn (8)
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Eq. (7) can be rewritten using Eq. (8) as follows [12]:

E(p∗(t)) =c0((x
∗(t))2 + (y∗(t))2 + (z∗(t))2)

− 2(c1x
∗(t) + c2y

∗(t) + c3z
∗(t)) + c4 .

(9)

The minimum of Eq. (9) is obtained by determining a root of the derivative
of Eq. (9) with respect to t equal to zero as follows [12]:

dE(p∗(t))

dt
= E ′(p∗(t)) = 0 ⇒ t =

λ− pn

‖n‖2
, (10)

λ =
(c1n

x + c2n
y + c3n

z)

c0
, (11)

d2E(p∗(t))

dt2
= E ′′(p∗(t)) = 2c0‖n‖2 > 0 . (12)

Eq. (12) shows that t in Eq. (10) is a mimimum solution for Eq. (9). This
t is utilized for projecting the point p onto the points obtained by Eq. (8).
During the projection process, the weight factor ad plays a key role. Three
methods for estimating the weight factors are suggested in [11, 13, 14].

ad =
1

‖p− pd‖4
, ad ∈ [0,∞] , (13)

ad =
1

1 + ‖p− pd‖2‖(pd − p)× n‖2
, ad ∈ [0, 1] . (14)

ad =
1

‖(pd − p)× n‖4
, ad ∈ [0,∞]. (15)

Eq. (13) assigns a large weight to the points near the point to be projected
[13], and Eq. (14) adds the distance between the projection in direction n and
the points [11]. These two equations yield acceptable values for applications.
However, they sometimes fail in high curvature regions of the point set. This
problem was addressed in [14], and a new method was proposed namely
Eq. (15).
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2.4. Adjustment of control points

We assume that a point p = (xc, yc, zc) is given, where zc = f(xc, yc).
Then, from Eqs. (1) and (2), we have

φkl = αzc, α =
Bk(s)Bl(t)∑3

a=0

∑3
b=0(Ba(s)Bb(t))2

. (16)

It means that the control point that interpolates zc is computed by the amount
of distance to zc multiplied by a weight α. This approach can be extended to
the adjustment of control points. We assume that ∆dij = |pij − pd

ij|, where
pd

ij is the projection of pij on the point set and pij is the point on the surface
defined by the control points φij. Then, the new control point is estimated to
be φ∗ij = φij +α∆dij using (16), which defines an updated surface that closely
approximates pd

ij. This adjustment step is applied to all control points one
by one, yielding a new surface approximating the point set. The updated
surface is then used to compute ∆dij. This process can be repeated until the
adjustment is less than the user defined tolerance.

The adjustment of control points proposed in this work reduces the error
∆dij as follows. At the k-th step, we have ∆d

(k)
ij = pd

ij − p
(k)
ij . Then, we

consider two consecutive errors ∆d
(k+1)
ij and ∆d

(k)
ij . Consider the difference

of ∆d
(k+1)
ij and ∆d

(k)
ij . Namely,

∆d
(k+1)
ij −∆d

(k)
ij = pd

ij − p
(k+1)
ij − (pd

ij − p
(k)
ij ),

= p
(k)
ij − p

(k+1)
ij ,

=
∑

a

∑
b

φabBa(ui)Bb(vj)

−
∑

a

∑
b

(φab + α∆d
(k)
ij )Ba(ui)Bb(vj),

= −
∑

a

∑
b

α∆d
(k)
ij Ba(ui)Bb(vj).

For ∆d
(k)
ij > 0, ∆d

(k+1)
ij −∆d

(k)
ij < 0 because

∑
a

∑
b α∆d

(k)
ij Ba(ui)Bb(vj) > 0.

Therefore, ∆d
(k+1)
ij < ∆d

(k)
ij , which means that as the adjustment step is

repeated, the approximation error decreases. For ∆d
(k)
ij < 0, a similar con-

clusion can be drawn. Here, α is the coefficient that controls the convergence
speed. In this work, α = 1.49 is used. For a 4 × 4 control points, we have
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α ≈ 1.49 with s = 1/3 and t = 1/3 from (16). This particular value, which
shows the best performance, has been chosen empirically through a series of
tests with various α’s for each s = 0, 1/3, 2/3, 1 and t = 0, 1/3, 2/3, 1. Us-
ing this process, the surface can be adjusted for reducing ∆dij, which can
represent more details on the surface and improve the accuracy of the ap-
proximation.

Through a series of experiments, it is noticed that the error reduction
obtained by the iteration of the adjustment process is not significant in most
cases. Therefore, applying the adjustment method once is sufficient in prac-
tice. However, if one iteration of adjustment does not satisfy the tolerance,
then we run the MBA with a refined control lattice as shown in Fig. 3.

Figure 6: Result of the multilevel B-spline approximation and the proposed method. (a)
The human face scattered data set. (b) Multilevel B-spline approximation (19×19 control
points, RMSE=0.0905). (c) The proposed method (19×19 control points, RMSE=0.0904).

2.5. Measurement of approximation quality
In this study, the quality of approximation of the input point set is mea-

sured using the RMSE (Root Mean Square Error). It is based on the Eu-
clidean distance which is the distance between a grid point on the approxima-
tion surface and its closest point among the input points. Suppose that we
have ng grid points and the input point set P . Then, the RMSE is defined as
follows:

RMSE =

√∑ng

i=1(Min(||Gi −P||))2

ng

. (17)

Equation (17) is suitable for evaluating the quality of approximation com-
pared to others that may involve curvature. The curvature is a surface-
intrinsic property that requires the second derivatives, which are sensitive
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to the surface smoothness. When a surface is represented by a set of points,
distorted curvature values could be obtained because the derivative computa-
tion from the discrete points is highly affected by the level of noise in the point
set. On the other hand, the Euclidean distance is less sensitive to the noise.
Therefore, we used the Euclidean distance based measure in this study.

3. Experimental results and discussion

Three different scattered data sets were used to demonstrate the proposed
method. The first example is a scattered data set representing a human
face as shown in Fig. 6 (a). It consists of 9801 unstructured points. The
MBA method with 19× 19 control points yielded an RMSE value of 0.0905,
whereas the proposed method yielded an RMSE value of 0.0902 with the
same number of control points. Although the RMSE values by the MBA and
proposed methods are similar, the proposed method represented the shape
of the data points more accurately. The nose is better approximated by the
proposed method, as shown in Fig. 6.

The second example is a data set of a simulated landform. This data set
consists of 9801 data points, as shown in Figs. 7 and 8. In this experiment,
two different control nets were considered. Figure 7 shows the approximation
results by the MBA and the proposed methods with 13× 13 control points.
The RMSE value of the proposed method (RMSE = 0.0167) is smaller than
that of the MBA method (RMSE = 0.0194), and more details are approxi-
mated by the proposed method as shown in Fig. 7. In Fig. 8, both methods
are compared using 23 × 23 control points. The proposed method yielded
a smaller RMSE (0.0099) value than the MBA method (0.0116), and repre-
sented more small features.

In the third example, the same landform data set with more points was
considered. In this example, the 35× 35 control points were for comparison.
The proposed method yielded a smaller RMSE value (0.0119) than the MBA
method (0.0124). Moreover, the high curvature regions are better represented
by the proposed method, as shown in Fig. 9.

Four more examples were taken to demonstrate the performance of the
proposed method compared to the MBA approach as shown in Table 1. As
shown in the table, the proposed method produces more accurate results than
the MBA method for the same number of control points. In addition, it
represents more details of the shape than the MBA method.
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Figure 7: Result of the multilevel B-spline approximation and the proposed method.
(a) Landform scattered data set (N=9801). (b) Multilevel B-spline approximation (13 ×
13 control points, RMSE=0.0194). (c) The proposed method (13 × 13 control points,
RMSE=0.0178).

Figure 8: Result of the multilevel B-spline approximation and the proposed method. (a)
Landform scattered data set (N=249001). (b) Multilevel B-spline approximation (23 ×
23 control points, RMSE=0.0116). (c) The proposed method (23 × 23 control points,
RMSE=0.0105).
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No. Input data MBA Proposed

1

(35× 35) (35× 35)
50,000 pts RMSE = 0.01741 RMSE = 0.01735

2

(35× 35) (35× 35)
45,000 pts RMSE = 0.03521 RMSE = 0.03514

3

(35× 35) (35× 35)
40,000 pts RMSE = 0.04284 RMSE = 0.03995

4

(19× 19) (19× 19)
11,726 pts RMSE = 0.01050 RMSE = 0.00897

Table 1: More examples. The number of input points, the size of control points, and
RMSE for each case are provided.
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Figure 9: Result of the multilevel B-spline approximation and the proposed method. (a)
Landform scattered data set (N=249001). (b) Multilevel B-spline approximation (35 ×
35 control points, RMSE=0.0124). (c) The proposed method (35 × 35 control points,
RMSE=0.0120).

4. Conclusion

A novel method for improving the approximation accuracy in the MBA
scheme was proposed. The proposed method directly adjusted the control
points by considering the errors between the approximated surface generated
by the MBA method and the input scattered points.

In contrast to the MBA method, the proposed method increased accu-
racy without increasing the number of control points. Therefore, the MBA
method can avoid further refinement, and the number of control points can
be minimized. This can reduce memory requirements and computation time
for subsequent processes.

Currently, the weight value for the adjustment of the control points is
fixed to be 1.49. However, an optimal weight can be estimated depending
on the underlying geometric shape of the points. Moreover, the amount of
adjustment can be represented using the multiwavelet method such as [15]
without introducing α in the adjustment. The computation of adaptive α and
the derivation of an exact representation of the amount of adjustment are
recommended for future work.
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� We propose a method for improving the multilevel B-spline approximation method.  

� We use a point projection method for computing the amount of errors. 

� The computed errors are directly applied to the control points for reducing the approximation error. 

 

 


